CODAMAT: a Modern Analogue Technique for compositional data
نویسندگان
چکیده
The quantitative estimation of Sea Surface Temperatures from fossils assemblages is a fundamental issue in palaeoclimatic and paleooceanographic investigations. The Modern Analogue Technique, a widely adopted method based on direct comparison of fossil assemblages with modern coretop samples, was revised with the aim of conforming it to compositional data analysis. The new CODAMAT method was developed by adopting the Aitchison metric as distance measure. Modern coretop datasets are characterised by a large amount of zeros. The zero replacement was carried out by adopting a Bayesian approach to the zero replacement, based on a posterior estimation of the parameter of the multinomial distribution. The number of modern analogues from which reconstructing the SST was determined by means of a multiple approach by considering the Proxies correlation matrix, Standardized Residual Sum of Squares and Mean Squared Distance. This new CODAMAT method was applied to the planktonic foraminiferal assemblages of a core recovered in the Tyrrhenian Sea. Kew words: Modern analogues, Aitchison distance, Proxies correlation matrix, Standardized Residual Sum of Squares.
منابع مشابه
Spatial modelling of zonality elements based on compositional nature of geochemical data using geostatistical approach: a case study of Baghqloom area, Iran
Due to the existence of a constant sum of constraints, the geochemical data is presented as the compositional data that has a closed number system. A closed number system is a dataset that includes several variables. The summation value of variables is constant, being equal to one. By calculating the correlation coefficient of a closed number system and comparing it with an open number system, ...
متن کاملCRFA-CRBM: a hybrid technique for anomaly recognition in regional geochemical exploration; case study: Dehsalm area, east of Iran
Identification of geochemical anomalies is a significant step during regional geochemical exploration. In this matter, new techniques have been developed based on deep learning networks. These simple-structure-networks act like our brains on processing the data by simulating deep layers of thinking. In this paper, a hybrid compositional-deep learning technique was applied to identify the anomal...
متن کاملDeveloping a Compositional Reservoir Model for Investigating the Effect of Interfacial Tension on Oil Recovery
In this paper, a simplified formulation for compositional reservoir simulator is presented. These types of simulators are used when inter-phase mass transfer depends on phase composition as well as pressure. The procedure for solving compositional model equations is completely described. For equilibrium calculation, property estimation Peng Robinson equation of state is used. This equation ...
متن کاملThe Use of Robust Factor Analysis of Compositional Geochemical Data for the Recognition of the Target Area in Khusf 1:100000 Sheet, South Khorasan, Iran
The closed nature of geochemical data has been proven in many studies. Compositional data have special properties that mean that standard statistical methods cannot be used to analyse them. These data imply a particular geometry called Aitchison geometry in the simplex space. For analysis, the dataset must first be opened by the various transformations provided. One of the most popular of the a...
متن کاملEfficient Evaluation for Untyped and Compositional Representations of Expressions
This report gives a simple implementation of A. Baars and S.D. Swierstra’s “Typing Dynamic Typing” [5] using modern (GHC) Haskell features, and shows that the technique is especially beneficial in a compositional setting, where parts of the expression are defined separately. Evaluating expressions that are represented as algebraic data types typically requires using tagged unions to represent v...
متن کامل